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The three-dimensional boundary layer on a swept wing can support different types 
of hydrodynamic instability. Here attention is focused on the so-called ‘spanwise 
instability ’ problem which occurs when the attachment-line boundary layer on the 
leading edge becomes unstable to Tollmien-Schlichting waves. In order to gain 
insight into the interactions that are important in that problem a simplified basic 
state is considered. This simplified flow corresponds to the swept attachment-line 
boundary layer on an infinite flat plate. The basic flow here is an exact solution of 
the Navier-Stokes equations and its stability to two-dimensional waves propagating 
along the attachment line can be considered exactly a t  finite Reynolds number. This 
has been done in the linear and weakly nonlinear regimes by Hall, Malik & Poll (1984) 
and Hall &, Malik (1986). Here the corresponding problem is studied for oblique 
waves and their interaction with two-dimensional waves is investigated. In fact 
oblique modes cannot be described exactly a t  finite Reynolds number so it’ is 
necessary to make a high-Reynolds-number approximation and use triple-deck 
theory. It is shown that there are two types of oblique wave which, if excited, cause 
the destabilization of the two-dimensional mode and the breakdown of the disturbed 
flow a t  a finite distance from the leading edge. First a low-frequency mode closely 
related to the viscous stationary crossflow mode discussed by Hall (1986) and 
MacKerrell (1987) is a possible cause of breakdown. Secondly a class of oblique wave 
with frequency comparable with that of the two-dimensional mode is another cause 
of breakdown. It is shown that the relative importance of the modes depends on the 
distance from the attachment line. 

1. Introduction 
Our interest is in the interaction of instability waves near the leading edge of a 

swept wing. The waves we consider are Tollmien-Schlichting modes induced by the 
viscosity of the basic state. Our investigation of this interaction problem is 
stimulated by the renewed interest in recent years in the development of laminar- 
flow wings. The mechanism that we consider occurs near the front of a wing so that 
it is a probable cause of the onset of transition in the flow. Clearly if this type of 
disturbance cannot be controlled then there is no point in being concerned about the 
different instability mechanisms which become operational as the flow develops. A 
primary aim of this paper is to investigate the possible role of three-dimensional 
waves propagating a t  a finite angle to the flow attachment line. I n  particular we 
consider the interaction of such oblique modes with the two-dimensional mode which 
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propagates along the attachment line. Before giving a more detailed account of the 
attachment-line instability problem we shall briefly discuss the other possible 
instability mechanisms in three-dimensional boundary-layer flows. 

The most commonly studied instability mechanism in three-dimensional boundary 
layers is the so-called ‘ crossflow vortex ’ instability first investigated theoretically in 
any detail by Gregory, Stuart & Walker (1955). They considered the boundary layer 
on a rotating disc and formulated the instability equations for inviscid disturbances 
of wavelength comparable with the boundary-layer thickness. The fact that the 
wavelength scales like the boundary-layer thickness means that non-parallel effects 
can be ignored so that the instability problem reduces to Rayleigh’s equation, which 
is a second-order differential equation. In  general this equation has a singular point 
if the wave speed of the disturbance turns out to be real. In fact the crossflow vortex 
mode is stationary and the effective basic flow has an inflection point a t  the critical 
layer so that there is no singularity there. Apart from this inviscid stationary mode 
there is a viscous stationary mode governed by triple-deck theory, see Hall (1986), 
MacKerrell(l987). However, the growth rates of the inviscid disturbances are bigger 
than those of the viscous ones so that inviscid modes are probably the most 
important in any practical situation. But since this mechanism is not operational 
near the attachment line, the mode considered in this paper is the most likely cause 
of transition. It should also be noted that unsteady inviscid crossflow vortices are 
possible and can in fact have the largest growth rates ; presumably in any experiment 
all types of modes could be excited but the flow visualization techniques used in the 
early experimental investigations of the problem pointed to the particular 
importance of stationary modes so they have received the most theoretical attention. 
The interaction of stationary crossflow-vortices with viscous Tollmien-Schlichting 
waves has recently been considered by Bassom & Hall (1990). 

In  the presence of surface curvature the Gortler vortex mechanism can also be a 
possible cause for the onset of transition. This mechanism is caused by centrifugal 
effects and might be particularly important in the flow over the concave region of 
modern laminar-flow airfoils which have significant regions of concave curvature. 
However, it was shown by Hall (1986) that  in a three-dimensional boundary layer 
this mechanism is destroyed by an asymptotically small crossflow velocity field so it 
could well be that in the practical situation it is unimportant. 

Now let us return to a discussion of previous work on the attachment-line 
instability problem. First we note that near the leading edge of an infinite swept 
cylinder the boundary layer can be approximated in an asymptotic sense by a 
stagnation-point boundary layer in the plane normal to the attachment line together 
with a parallel boundary layer along the attachment line. This approximation is of 
course only valid close to the leading edge and corresponds to the three-dimensional 
boundary layer on an infinite plate inclined a t  an angle to an oncoming flow. It is the 
latter flow which is usually used as an approximation to the boundary layer near the 
leading edge of a wing; we therefore make a similar assumption and confine our 
attention to the flow past an infinite swept flat plate. The flow therefore consists of 
a stagnation-point boundary layer in which the chord-wise velocity component 
increases with distance from the attachment line along which a ‘parasitic ’ constant- 
thickness boundary layer exists. 

The notable experimental investigations of this problem are due to Pfenninger & 
Bacon (1969), Gaster (1967) and Poll (1979). These investigators were concerned with 
different cylinder shapes and confined their attention to positions very close to the 
attachment line. It -was found that small-amplitude Tollmien-Schlichting waves 
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propagate along the attachment line if the input disturbance is small. However, if the 
input disturbance is large enough the results of Pfenninger & Bacon (1969) suggest 
that  there might be a subcritical response by the flow. In all of these investigations 
measurements were made close to the attachment line before the three-dimensional 
breakdown of the flow considered here could take place. Though this three- 
dimensional breakdown has not been investigated experimentally we feel that  it is 
possibly of great importance and might relate to the three-dimensional crossflow 
modes which have been measured further downstream in the chordwise direction. 

The experimental work discussed above was confirmed by the linear stability 
calculation of Hall, Malik & Poll (1984) and the weakly nonlinear and numerical 
simulations of Hall & Malik (1986) ; hereinafter we refer to these papers as HMP and 
HM respectively. In  the linear case HMP solved the linear stability problem for 
modes propagating along the attachment line. These modes are described by 
ordinary diflerential equations a t  all values of the Reynolds numbers so that HMP 
were able to find the whole of the neutral curve which separates the stable and 
unstable modes. Almost all of the experimental points were found to be on the lower 
branch of the neutral curve; subsequently HM showed that these modes bifurcate 
supercritically whilst the upper branch modes bifurcate subcritically. Thus the 
linear, weakly nonlinear and experimental work were found to be in excellent 
agreement ; the subcritical nature of the upper branch found by HM is also consistent 
with Pfenninger & Bacon's experimental observations of finite-amplitude dis- 
turbances below the critical Reynolds number. Some evidence of this kind of 
response was found by HM in their full numerical simulations; the supercritical 
nature of the lower branch was also confirmed by the numerical simulations of HM. 

There is of course no reason why Tollmien-Schlichting waves propagating at  an 
angle to  the attachment line cannot be important in the region where the basic state 
develops in the chordwise direction. It appears that no previous work on this 
problem has been carried out so here we discuss the linear and weakly nonlinear 
regimes for such disturbances in the presence of a two-dimensional mode. In  fact the 
three-dimensional modes are significantly different from the two-dimensional ones 
because they have a chordwise dependence different from that of the basic state. This 
means that, if we wish to construct a stability theory connected in some asymptotic 
sense to that appropriate to the full Navier-Stokes equations, we must restrict our 
attention to the high-Reynolds-number limit. In view of this fact, and because 
experimental work close to the attachment line suggests that lower-branch modes 
are the ones observed experimentally, we use triple-deck theory to investigate the 
stability properties of three-dimensional modes. This is done in the linear regime 
following the work of Smith (1979a) whilst in the nonlinear regime, where the 
interaction of modes is considered, we use the formulation of Hall & Smith (1984); 
this formulation also allows non-parallel effects to be taken care of in a self-consistent 
asymptotic manner. We shall show that three-dimensional interactions are possible 
which trigger a significant large-amplitude response which cannot be stimulated by 
the two-dimensional mode. We identify the orientation of the waves which produces 
this and other significant responses. The procedure adopted in the rest of this paper 
is as follows : in $2 we formulate the instability problem and discuss the solution of 
the linearized stability equations. In  $ 3  we derive the amplitude equations which 
describe the interaction of a two-dimensional wave with an oblique wave. The 
solution of these amplitude equations is discussed in $ 4  whilst in $5 we draw some 
conclusions. 
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2. Formulation of the stability problem 
Consider the flow of a viscous incompressible fluid of kinematic viscosity v 

adjacent to the flat plate defined by y = 0 with respect to Cartesian coordinates 
(x, y, 2). The velocity field (u, v, w) corresponding to (x, y, z )  satisfies the conditions 

u = v  = w = o ,  y =  0, ( 2 . l a )  

X u+u W I '  - w-tu,, y+m> (2.1 b)  

where U,  is a typical free-stream velocity and 1 is a typical lengthscale in the 
%-direction. The Reynolds number R is defined by 

( 2 . 2 )  R=-,  u, 
V 

and dimensionless variables (X, Y ,  Z), (U,  V ,  W )  are defined by 

(X, Y , Z )  = (z - - - ;) ( 2 . 3 ~ )  

(u, v, w) = U,(U, v, W ) .  (2 .3b)  

If the pressure is scaled on pUZ, and time T on Uw/ l ,  where p is the density of the 
fluid, then the Navier-Stokes equations and the continuity equation become 

1 
R 

U , + ( U . V )  u= -vp+-vu, ( 2 . 4 ~ )  

v .  u= 0, (2.4b) 

where P is the non-dimensional pressure. In  order to satisfy the no-slip condition the 
basic state has a boundary layer of thickness 1R-i near Y = 0. If the boundary-layer 
variable 7 is defined by 7 = RtY, 

the basic state can be expressed in the form 

U = (Xt i (q) ,  R-h(v), m(7)) (1 + O(R-i)), (2.5) 

where a+d = 0, ( 2 . 6 ~ )  

f l + g Q - v ~ - 1  = 0, ( 2 . 6 b )  

-urn' = 0, ( 2 . 6 ~ )  

with u(0) = d(0) = rn(0) = 0, ( 2 . 7 ~ )  

&(a) = -1 ,  rn(c0) = 1. ( 2 . 7 b )  

It is known, Smith (1979a, b )  that lower-branch Tollmien-Schlichting instabilities of 
boundary layers are governed by triple-deck theory. Here the interest is in oblique 
Tollmien-Schlichting waves proportional to E where 

with E = R-8 < 1. The triple-deck structure has upper, main and lower decks of 
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thicknesses O(e3) ,  U(e4)), and O(e5) ,  respectively. The normal velocity is scaled 
appropriately in each deck, while the X and Z scales are of the same order as the 
thickness of the upper deck. The timescale is chosen so that 

au au 
at a x  -- u-, 

in the lower deck. The slowly varying wavenumber a is then expanded as 

a =a,+ea,+ .... (2.9) 

(2.10) 

In the main part of the boundary layer the basic state is perturbed by writing 

u = (XU, € 4 ~  W )  ( 1  + o(e4)) + s(eu,, €25, Fw,) E+ . . . , 

where U,, V, and W, depend only on S and 7 whilst 6 is assumed small compared to 
any power of c. The corresponding pressure perturbation is e2P,E, where Po is a 
function of X only. The equations to determine U,, V, in the main deck are: 

ia, U,, + VOT, + iPW, = 0, (2.11a) 

i a , X ~ W , + ~ ~ w ’ + i ~ @ W ,  = 0, (2.11C) 

u, = a ( X ) X u ‘ ,  w, = a ( X )  w’, (2.12a, b )  

V =  -ia(X)[cz,Xu+P@], Po = a ( X ) ,  (2.12c, d )  

ia,X~li,+XTi,~’+iP@U, = 0, (2.11b) 

and the appropriate solution of this system is 

where u ( X )  is an amplitude function to be determined. Note that the solution we have 
found could be obtained by transforming to Squire coordinates. An investigation of 
the disturbed flow in the upper layer shows that all disturbance quantities decay 
exponentially there. In particular the greusure perturbation is e2@, E where 

(2.13 a )  

where Y = e3p. Thus matching with the main-deck solution requires 

Po (a:+p”): = a.[a,X+p]2. (2.13b) 

It should be noted from (2.12) that when 7 i 0  

u, - 4x1 u, W, - a ( X ) p ,  (2.14) 

where from numerical calculations i t  is found that h = 1.236, ,u = 0.570. Finally, in 
the lower deck the pressure perturbation is still e2Po E ,  i.e. the pressure perturbation 
is independent of 5, whilst the total velocity field can be written: 

U =  €<AX+ ...+ 6eu,E+ ..., 

v = - y p h  + . . . + 6€3V,  E + . . . , 
(2.15a) 

(2.15b) 

W = ec,u+ +. .+  6ewoE+ . . . .  ( 2 . 1 5 ~ )  

Here the lower-deck variable 5 is defined by 

5 = Y€-5. 
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L(;)=o, 

where the matrix operator 

(2.16) 

(2.17) 

The boundary conditions are that u,, v, and w, satisfy the no-slip condition a t  the 
wall and match with the main-deck solution as c+ 00. The solution for aouo+pwo 
and t i o  is obtained from (2.16) in the following manner. We multiply the first equation 
of (2.16) by a, and the second one by /3 and add the resulting equations together. The 
resulting equation is differentiated with respect to 6 to eliminate Po and v, is 
substituted from the second equation of (2.16). The final equation is an Airy equation 
for a,atl,/ag+pi3wo/ac. Thus, the solution of the wall-layer is then written as 

a, uo +pw0 = b ( X )  Ai (s) ds, lo 
Avo = - i lo (a, u, + pw,) ds, 

where Ai is the Airy function and 

(2.18) 

(2.19) 

(2.20 a) 

(2.20 b) 

(2.20 c )  

The pressure Po can be related to the displacement function b by using the X and Z 
momentum equations to give 

i{ai+,!?2}Po = A2Ai'([,)b. (2.21) 

The lower- and main-deck solutions are then found to match if 

Ai' (6,) (ao AX + pp)g = ii(ai + P2);x0(a, X + P)', 

xo = fi Ai (s) ds. where 

(2.22) 

The eigenrelation (2.22) determines the complex wavenumber a, for given p and Q. 
For neutral stability i t  is known that 

(2.23a, b )  
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( x  10-1) 
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B 
FIGURE 1. The neutral eigenvalues satisfying (2.24). 

Thus the neutral values of a, and /3 are related by 

1.001(a0AX+/3p)~ - (a~+P”)~(aoX+/3)2. (2.24) 

The modes corresponding to those of HMP have a, = 0 in which case /3 satisfies 

p N 1.001p:. 

At any given value of X there are in addition neutral three-dimensional modes with 
a, + 0. The above analysis fails if a,X+/3 or a0AX+/3,u become negative anywhere 
in the (ao,/3)-plane so only eigenvalues of (2.24) above the lines a0AX+/3,u = 0, and 
aoX+/3 = 0 are acceptable. In figure 1 (a) uo is shown as a function of /3 for 
X = 0.1, 1 ,  10, 20, 30. The solutions in the second quadrant asymptote to the line 
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FIGURE 2. The imaginary part of a,, satisfying (2.24), as a function of X for 
a range of values of 52. 

a. X + p = 0 as p --f - 00 whilst those in the fourth quadrant asymptote to the line 
aohX+pp = 0 as p-0. Figure 1 (b)  shows the neutral values of 52 from (2.20) as a 
function of p for X = 0.1, 1 ,  10, 20, 30. 

Finally in this section we notice that the two-dimensional mode of ( 2 . 2 2 ) ,  which of 
course corresponds to a. = 0, is neutrally stable a t  all values of X. The three- 
dimensional modes, however, are initially unstable on the attachment line X = 0 and 
becomc stable beyond a critical value ofX. Experimentally it appears that if the level 
of disturbances present in the flow is sufficiently small then it is the two-dimensional 
mode which is observed. In  the next section we investigate the possibility that the 
two-dimensional mode might be destabilized by oblique modes which grow in the X- 
direction. In figure 2 we have shown typical growth rate curves for the three- 
dimensional modes for p = 0.5. 

In  fact the small-p solutions are rclated to the stationary modes of instability of 
the three-dimensional boundary layer discussed by Hall ( 1986) and MacKerrell 
(1987). These modes orient themselves such that the shear stress of the ‘effective’ 
velocity profile is zero; the lower-deck structure is then described by parabolic 
cylinder functions rather than Airy functions. Thus when a. tends to zero we find 
from (2.24) that  

so that the neutral frequency tends to zero like ai. The time-dependent version of the 
stationary modes discussed by Hall and MacKerrell has recently bccn considered by 
Bamom & Gajjar (1988). 

pp = -ao Ax+ O(ao)t, 

3. Weakly nonlinear theory 
Suppose that the three-dimensional mode with (a, p, 52) = (a2, p2, Q,) is neutrally 

stable a t  X = X,. We consider the interaction of this mode with the two-dimensional 
disturbance which propagates along the attachment line. We know from the work of 
Hall & Smith (1984) that in the absence of the two-dimensional mode the three- 
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dimensional mode will evolve in a nonlinear, nowparallel manner in an €2 
neighbourhood of X,. We therefore define by 

- ( X - X , )  x= 1 . (3.1) 
€3 

Later we can derive the ‘quasi-parallel’ evolution equations for (X-X,) > O($) by 
taking the limit x+ co. In order that the two-dimensional mode in this 
neighbourhood should be of finite size we suppose that, with = Q,, the neutral 
frequency for a two-dimensional wave, the spanwise wavenumber P1 is expanded as 

p, = p l o + € ~ l l  +@+. . . , (3.2) 

where Pl0,/?,, are the first two terms in the expansion of the neutral spanwise 
wavenumber. 

It is now convenient to represent the ‘fast’ dependence of the Tollmien-Schlichting 
waves in the X-direction by multiple scales rather than the WKB formulation of $2.  
We therefore write 

(3.3) x* = (X-XIl) 
€3 . 

Next we define PlZ QlT 

where Q,, Q, and P, expand as 

a, = Ql0 + “Q,, + O(B2), 

a, = a,, + €a,, + O(€2),  

(3.4a) 

(3.46) 

P Z  = P z o  + 4L + O(e”. ( 3 . 4 4  

Here Q,,, Q,, etc. are the neutral values appropriate to the location X = X, whilst P1 
is as given by (3.2). For the three-dimensional mode we further expand 

a2 = a20 +€a,, + O(€*),  (3.4d) 

where a20, azl are the first two terms in the expansion of the neutral value of a, at 
X = X,. In the lower deck we write the velocity in the form 

u= €[Ax+ ...+ e n ,  

v = - y C A  + . . . + € 3 V ,  

(3.5a) 

(3.56) 

w = € [ p + + . . . + € W ,  (3 .54  

and then expand the disturbance velocity field (0, p, W )  together with the 
corresponding pressure perturbation as 

(0, v, w, P )  = S b ,  + &, + €is3 + 4s4 + . . . . (3.6) 

Here the term S,  corresponds to the fundamental modes proportional to El and E,. 
The second-order term S ,  corresponds to first harmonic and mean flow correction 
terms generated by the interaction of the Tollmien-Schlichting waves. The third- 
order term S3 again contains the fundamentals generated because the correction 
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terms in (3.4) are O ( c ) .  Finally the fourth-order term S, contains fundamental and 
other terms driven by the interaction of S,  and S,. Note that the scalings in (3.6) 
have been chosen so that non-parallel and nonlinear effects are equally important. 

Clearly the function S,  satisfies the linearized problem of 92  so we write 

S,  = AS,,E,+BS,,E,+C.C. (3.7) 

where C.C. denotes complex conjugate and A and B are functions of 3 to be found 
at higher order. The functions Sii are defined by S, = (U,, V,, Ki, I$) for i , j  2 1, and 
S,,, S, ,  satisfy (2.16) with (ao,P, Q) replaced by (0, Plo, ale) and (a,,,Pzo, a,,) 
respectively. Thus for example we can show that 

where c is a function of X. 

written as 
At next order we find that the first harmonics and mean flow corrections can be 

S ,  = { A 2 S 2 , E ~ + B 2 S z 2 E ~ + A B S 2 , E ,  E,+ABS,,E,E~’)+C.C. +IA12S2,+IB12S26, 
(3.8) 

where B denotes the complex conjugate of B. We find that S2,,S2, satisfy the 
differential system 

I (3.9) 

i a , o ~ n + ~ n ~ + i ~ n o w l n  d5 u,, 
‘(‘“no. 2Pno, 2 Q m )  0 

dW1n 
d5 

iano u1n Kn + K, -+ iPno W:n 

and 

for n = 1 ,2  and alo = 0 where the operator L is defined by ( 2 . 1 7 ) .  These equations 
must be solved subject to 

u 2n = v  2n = W , , = O ,  C = O ,  (3.10) 

The functions S,, and S,, satisfy similar equations but with (2an0,  2Pn0, 252,,) 
Pl0 -I$,,, Q,, k a,,) for n = 3 , 4  and the right-hand side of (3.9) 

and the solutions must match with the main-deck solutions as 5- co. 

replaced by (alo 
replaced respectively by 



Wave interactions in an  attachment-line boundary layer 377 

The mean flow corrections for S,, and S,, have V,, = V,, = 0 whilst for n = 1 ,2  

(3.1 1 a)  

which must be solved subject to  

(3.12b) 

I n  the main and upper decks the mean flow corrections and the first harmonic 
functions are not forced by the fundamentals and therefore satisfy similar equations 
to those discussed in $2; the matching of the main-deck solutions for the first 
harmonics with the lower-deck solution produces boundary conditions a t  5 = co for 

At next order in the lower-deck problem we obtain only fundamental terms driven 
by the variation of the mean state. In  fact the solution of this linear problem when 
matched with the main-deck solution determines the O(s)  terms in the expansion of 
the neutral wavenumber and frequencies. Since the solution a t  this order has no 
effect on the amplitude equations for A and B we give no details of it here. 

The interaction of the fundamental term S, with the mean flow correction and first 
harmonic term generates fundamental terms in S,. I n  addition further fundamental 
terms are produced by the evolution of the amplitude functions A and B and the 
basic state on the 3 lengthscale. If we write S, in the form 

'2l> '229 '239 '24' 

s, = S, ,E,+S,zE2+C.C.+. . . ,  

where ... represents other terms forced by the interactions, then after some 
manipulation we find that S,, and S,, satisfy 

and 
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with aP,,/ac = aP4,/a[ = 0. Here the functions Gl, G2, @, and G4 are defined by 
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@1 = ialo(U25 U11+ Uz1c',1) + V11 q 5  + V,, Q1+ V11 

+i/%0(K5 'll-@l ull+2%l 'Zl),  (3.14 a )  

@, = ialo( U,, U,, + U,, IJ,, + U,, U12) + V,, &, + VZ3 Q, + V,, U;, 
+ K Z  ''La + bl ql, + + P Z O )  F2 'J23 +'(PlO - B Z O )  WZ '24 

+ ipZO K4 '12 - ' P Z O  w3 '12 + ip10 w 6  "11, (3.14h) 

@3 = ia10(U25 w11 + 2611 W21- u21 w11) + 5, w;, + 61 
+ql %1+ip10(K5 Tl+wll K1)t ( 3 . 1 4 ~ )  

@4 = i(a10+a20) '12 ~ 3 + i ( a 1 0 - a 2 0 )  '12 @4-ia20 '23 F2 

+ia2, L',, W,, +ialO '26 W,, + V,, JG4 + V,, JC2 + V,, WI, 
+ C ' i , 2 ~ 3 + ~ 1 l ~ ~ , + ~ P 1 0 ~ ~ 2 @ 4 + w , T / I . ; , + K , W , , ~ ~  ( 3 . 1 4 d )  

with al0 = 0. The corresponding expressions for G5, 06, @,, and G8 are obtained from 
(3 .14 )  with (a,,, plo, Q,,) and (azo, p,,, Q,,) intcrchanged and then alo set equal to zero 
together with 

{A,  B,  suffixes 11, 12, 21, 22, 23, 24, 25, 26), 

replaced by {B, A ,  suffixes 12, 11, 22, 21, 23, 24, 26, 25).  

Finally the terms with suffix 24 are replaced by their complex conjugate. The 
disturbance velocities (U41, V,,, W41) and (U,,, b2, W,,) must of course vanish a t  5 = 

0 and the functions S41, S,, must match with the corresponding functions in the main 
deck. The latter matching conditions completely specify inhomogeneous diff'erential 
equations for S,, and S,,. Since the homogeneous form of these systems have a 
solution i t  follows that we must apply solvability conditions to the systems for S41, 
S42. In  order to write down these conditions we must introduce the differential 
systems adjoint to those which determine the fundamentals. 

Before we describe the adjoint system it is necessary to specify the boundary 
conditions on the systems for S,, and S,, as [+ m. First we must obtain the leading- 
order solution in the upper deck which in turn will enable the zeroth-order solution 
in the main deck to be determined. This will produce the required boundary 
conditions. We are able to consider a single three-dimensional perturbation since the 
effects from the nonlinear terms in the equations of motion are only present in the 
lower deck to the order of interest. This formulation will allow the boundary 
conditions for S,, and_S4, to be obtained by setting a, = 0 and p = plo for S,, and 
a. = az0, P = 

In the upper deck of the triple-deck structure we write the perturbed flow for a 
three-dimensional disturbance as 

u= (X,0,1)+€2(0,B,@), ( 3 . 1 5 ~ )  

P = - ?JZ + €2P, (3 .15b)  

and P = 0 for S42. 

where 

(0, P, W,P) = €t!3(O1,, q, %,PI) +eE2(O2,  c, I&.,F,) 
+ € ~ ( ~ , , ~ ~ , ~ ~ , j i M ) + € ~ ~ ( ~ , , ~ , ~ , ~ , ) + . . . + C . C . ,  (3 .16)  
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where E is defined by (2.8) and PI is given by ( 2 . 1 3 ~ ) .  We substitute for U and P in 
the governing equations (2.4) to obtain the solutions for 04, q, W4,P4. We are only 
interested in the behaviour of p4 and in the upper deck as P.-t 0 so we will only give 
these expressions. We find that a t  P = 0 

( 3 . 1 7 ~ )  

and 

(3.17b) 

where a4(X) is an unknown amplitude function and where some terms arising from 
the nonlinear interaction between the fundamental and first harmonic terms have 
been omitted since it is anticipated that they will not be included in the required 
matching condition. 

In the main deck the velocity and pressure fields are expressed in the following 
way : 

( 3 . 1 8 ~ )  

P = -&Y2+2F, (3.18b) 

where (0, P, T@, P )  expand in a similar way to (8,8, W ,  P )  from (3.16). We find that 
since dP4/i37 = 0 - and in order to match with the upper-deck solution as 7 + 00 the 

u = (XE, €4V, m) + (eO, € 2 P ,  €F), 

pressure term P4 is given by 
(a0 X n  + PI2 P4 = a4 
(a; +p"i ' 

and from matching the solution for p4 with (3.17 b )  we have 

2Xn(a0Xn u + Pa) da 2i(a0Xn u + Pm) (aor? + 1) + -+ U 
(aoXn+P) dx (aoXn + P )  

( 3 . 1 9 ~ )  

(3.19b) 

From the continuity equation we can now obtain the behaviour of a. 04++q4 as 
7 + 0, which is the function required for the matching condition between the lower 
and main decks. Thus, a t  7 = 0 

(3.20) 

In  the main deck the velocity and pressure fields are expressed in a similar way to  

I3 FLM 217 
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(3.15) and (3.16) following (2.10) with S = eQ. Multiplying t,he X momentum equation 
by 01, and the Z momentum equation by p we obtain 

and from matching with the main deck since aP4,/aC = 0 

(3.22) 

where a, is the amplitude of the lower-deck disturbance. The matching condition 

(3.23) 
requires that 

which can be obtained from (3.201, (3.21) and (3.22). After some manipulation we 

04+/@l,)~=0 = U40+pw,0),=m3 

obtain the condition 
2iXn da, D(ao)--CD”(O) = (ao u,,+pw,,),=, 

(3.244 

and U,, and W,, are defined by a, U,, = u, and a, W,, = wo. We note here that the 
linear eigenrelation in § 2 is D( a) - CF“(0) = 0 with D given by D = a, uo + Pw,. We 
also note that (3.24) can be obtained directly from the linear eigenrelation (2.22) in 
the form 

i(a:+P2)(aOX+P)2(a, U+PW), = (aoXh+Pp)(aO U+PW)g, 

by writing X = X ,  + dX, a, = a, - E$ a/aX, p = p+ esp, U = u, + &J,,, and W = 
w0+e~iw4, and equating coefficients of .4. 

Now we can obtain the solvability conditions to be applied to the systems for S,, 
and S,z. We first note that if we define 

3 -  

F = a, U, + Pw,, 
in (2.18) then the eigenvalue problem which leads to (2.22) can be written as 

F“- i[ao AXn + /3p] cF + i Q F  = 0,  

F(0)  = F’(co) = 0,  

(3.25 a )  

(3.256) 

F ( a )  = CF”(O), (3.25 c) 

where C is given by ( 3 . 2 4 ~ ) .  The system adjoint to (3.25) is 

p’ = 0, (3.26 a)  

r”-i[a,AXn+~p]~r+iirnr = p ,  

q(0) = T ( o 0 )  = 0, r ( 0 )  = Cp(o0) 

(3.266) 

(3.26 c) 
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It is easily seen that we can take p = 1 in (3 .26)  and then solving the equation for r 
using variation of parameters and the boundary conditions gives (2.22) again. It then 
follows that if 52 = 52(ao,p) is an eigenvalue of (3.25) then the system 

G”’-i(aoXnh+p/3)[G+iQG = R, 

G(0) z= G ( w )  = 0, G(m)-CG”(O) = y ,  

will have a solution if [:rBd[=y. (3.27) 

We will consider in detail the solvability condition applied to  the differential 
system ( 3 . 1 3 ~ ) .  Then it will be a straightforward matter to obtain the corresponding 
result for (3 .13b) .  If we rearrange ( 3 . 1 3 ~ )  in the manner described in $2 in order to 
obtain the differential equation for aouo+pwo then ( 3 . 1 3 ~ )  can be expressed as 

G’”-i(alohXn+~,op)5G+i5210G = Q1, (3.28 a )  

with boundary conditions G(0) = G ( a )  = 0, (3.28 b)  

and G( 03) - CG”(0) = yl, ( 3 . 2 8 ~ )  

where now G = al0 U,, + plo W41. The function Q1 is given by 

(3 .28d)  

where R,, R2 and R, are the right-hand sides of ( 3 . 1 3 ~ ) .  From ( 3 . 2 4 ~ )  we have 

(3.28e) 

Note that al0 = 0 in the above equations but has been included so that the 
corresponding solutions for S,, may be readily obtained. After some rearrangement, 
applying the solvability condition (3.27) to the above system (3.28) and the 
corresponding one for S42r produces a pair of amplitude equations for A and B. 

Thus it follows that the differential systems for S41,S42 will have a solution if 

A, $A -al AIA l 2  - b, A (3.29 a )  
dA 
dx 
-= 

(3.296) 
dB - = h2ZB- a2 BIBI2 - b,BIAI2. dx 

Here the coefficients A,, A, are defined by 

2xn “‘I - 2i 

3P10 /[ 3piop 
hl = - - - [ 2 + H l ]  & G I +  ( 3 . 3 0 ~ )  

(3.30 6 )  
13-2 
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where for n = 1,2, G,, H ,  are defined by 
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with 

P m  1 

where rl and r2 correspond to r in (3.26) with (a ,  /3,52) = (0, Plo, Ql0) and (a ,  /3, Q) = 

( a2o ,P20 ,  Q 2 0 )  respectively. 

4. The generalization and solution of the amplitude equations 

P1 by an amount eg/? from the neutral value. In  that case (3.29) becomes 
First we note thak the three-dimensional wave can also be ‘de-tuned ’ by varying 

A, /E4 -a1AIA12 -b, AlBl2, (4.1 a )  
dA 
dx 
-= 

(4.1 b )  - = A 3 1 j B + / \ 2 ~ ~ - a 2 R I ~ ~ 2 - b 2 R I A I ~ ,  

where A, is defined by an expression similar to (3.30a). Secondly we note that (3.29) 
apply in a t.; ncighbourhood of the position where the three-dimensional wave is 

dR 
dx 
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neutrally stable. Following Hall & Smith (1984) it can be-shown that (3.29) apply 
over a longer lengthscale if h,T? in (4.1 b )  is replaced by A,x, where x is then treated 
as a constant in the amplitude equations. This result can be found directly from (4.1) 
by letting --f co and introducing a lengthscale shorter than 2 in order to retain the 
derivative terms. The resulting amplitude equations have a ‘ quasi-parallel ’ nature 
and correspond to the calculation of Smith (1979b). 

We now define p and a by 

p = IA/*, 0- = py, 
in which case (3.29) and the generalization of this system for 2 9 1 can be written 

and 

( 4 . 2 ~ )  

(4.2b) 

(4.3a) 

(4.3b) 

The precise nature of the solutions of (4.2), (4.3) depends sensitively on the 
constants appearing in these equations. We shall see in the next section that the 
constants alr and a2, are positive almost everywhere so we first discuss such a 
situation in detail. In fact a,, is always positive and this result is entirely consistent 
with the finite-Reynolds-number calculations of HM for the two-dimensional mode. 

A matter of some importance is the question of whether p or a in (4.2) or (4.3) can 
become infinite at a finite value of 2. This would mean that bhree-dimensionality 
could destroy the stable equilibrium states of HM. We seek a singularity of either 
system as x + g o  by writing 

a 0  + ... ,  a=-+ ..., P =  - - Po 
(XO -XI (XO - X )  

(4.4a) 

1 = 2 ( - a 2 r a o - b 2 r ~ o ) >  (4.4 b )  

and po and uo must of course both be positive. It follows immediately that no such 
singularity is possible if a,,, a2,, b,, and b,, are all positive. In  fact it is easily shown 
that with a,, and a2, positive the only case when the singularity can occur is when 

(4.5) 
b,, and b,, are negative and 

a11 a2r < b1r bzr .  

This condition effectively identifies an important class of three-dimensional waves 
which can have a significant effect on the two-dimensional equilibrium states of HM. 
In order to see why this is the case it is necessary for us  to discuss the solutions of 
(4.2) and (4.3) in more detail. We continue to discuss the solution for the case when 
a,, and a2, are both positive. 

In  fact we begin with a discussion of (4.3) and return to (4.2) later. It is easily 
shown from (4.3) that p and a have the possible equilibrium states: 

(a)  p = u = 0, ( 4 . 6 ~ )  

( b )  p = h,,/?U& a = 0, (4.6b) 

( c )  p = 0, a = [h,,p+h2,2Ia;;, ( 4 . 6 ~ )  

(d )  P = [hlrB-b,ru~a;:, a = { h , , P ~ , , - [ h , , ~ + h 2 r k 3 u , r } / { ~ l r b P r - ~ l r a 2 t . } .  (4.6d) 
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FIGURE 3 ( a d ) .  For caption see facing page. 
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FIGURE 3. The equilibrium solutions for (a )  a,,, 
b,, > 0 with b,, b,, < alraZr; (c) a,,, 
with b,, b,, < a,, a,? ; ( e )  a,,, a2r, b,, > 0 and b,, < 0 ; (f) a,,, 

b,,, b,, > 0 with b,, b,, > a,,a,,; ( b )  alr, a,,, b,,,  
> 0, b,,, b,, < 0 with b,, b,, > a,,a,, ; (a) a,,, a,,, > 0, b,,, b,, < 0 

b,, > 0 and b,, < 0. 

The solutions (6) and ( c )  correspond to 'pure ' two-dimensional and three-dimensional 
modes respectively whilst (d )  is a mixed mode. If the detuning parameters 8 and p 
are held fixed whilst is varied we can determine the evolution of the equilibrium 
amplitudes as the disturbance develops away from the attachment line X, = 0. For 
each case the phase-plane solutions were plotted for p and CT. The stability of the two- 
dimensional mode, the three-dimepional mode and the mixed mode, corresponding 
to  (4.6bd) are determined as is increased from -a. Note that from the 
calculations A,, from (3.30b) is negative. The stability of the different equilibrium 
solutions can be checked by a routine stability analysis. Before discussing the nature 
of the solutions we note that in all the cases we computed a,, and a,, are almost 
always positive so that nonlinear effects are stabilizing if either the two- or three- 
dimensional modes exists separately. We further assume that the detuning parameter 
p has been chosen such that h,,Ba,, > 0 so that in the absence of a three-dimensional 
wave a stable finite-amplitude wave propagating along the attachment line is 
possible. If al, and a,, are positive then there are four possible combinations of signs 
for b,, and bZr.  The bifurcation properties for these four cases are summarized below. 
In  figure 3(a-f)  described below the solid lines denote stable solutions while the 
broken ones denote unstable solutions. 
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Case I :  a,,, a,,, b,,, b,, > 0 
The different possible solutions in this case are shown in figures 3 ( a )  and 3 ( b )  for 

the ‘sub-cases’ b,,b,, > a,,,a,, and b,,b,, < a,,a,, respectively. Sufficiently far 
upstream we see that only the pure two-dimensional mode is a possible stable mode 
whilst sufficiently far downstream only the two-dimensional mode is a possible 
equilibrium flow. In  the case b,, b,, < a,, a,,, there is a short interval where the mixed 
mode is the only possible stable state. 

Case I I :  a,,, a,, > 0, b,,, b,, < 0 

The solutions in this case are shown in figures 3 ( c )  and 3 ( d )  for the ‘sub-cases ’ b,, 
b,, > a,, a2+ and b,, b,, < a,, a,,, respectively. In  the first case the only stable solution 
is the two-dimensional mode beyond the position where the mixed mode bifurcates 
from it. However, a phase-plane analysis shows that a sufficiently large disturbance 
to this state is unstable. Thus there is a threshold type of response where a small 
disturbance to the two-dimensional mode decays whilst a sufficiently large one will 
grow. The size of the ‘sufficiently large disturbance’ decreases to zero as X decreases 
to the point where the mixed mode bifurcates. Before this point there are no stable 
modes and any disturbance will grow ; in this case and the threshold-amplitude case 
the growing disturbances terminate in the finite-2 singularity discussed previously. 

Case 111: a,,, a,,, b,, > 0, b,, < 0 

Here the situation is as illustrated in figure 3(e) .  Dependent on the value of 8 
either the mixed or two-dimensional mode is stable. A phase-plane analysis shows 
that each stable state is stable to an arbitrarily large disturbance so there is no 
threshold-amplitude type of response. 

Case I V :  al,, a,,, b,, > 0, b,, < 0 

The situation is now virtually the same as Case I_II except that mixed mode loses 
stability to the three-dimensipal mode when 2 decreases, so that the three- 
dimensional mode is stable ag + - co . Again there is no threshold-amplitude type 
of response a t  any value of r?. This is illustrated in figure 3 ( f ) .  

Thus we see that apart from the case a,,, a,, > 0, b,,, b,, < 0 with b,, b,, > a,, a,, 
there is always a stable equilibrium state available a t  any value of 2. Furthermore, 
apart from the case just mentioned, a t  sufficiently negative values of the stable 
state is never the two-dimensional mode. However, as the disturbance develops with 
increasing 2 ultimately only the two-dimensional mode is stable. In the exceptional 
case a sufficiently large initial disturbance will terminate in a singularity a t  a finite 
value ofr?. 

We now turn to the case where a,, and a,, are not both positive. We shall see in 
the next section that this situation is unusual and occurs when the constant a,, 
becomes negative so that nonlinear effects destabilize the three-dimensional mode. 
The situation in this case can be investigated following the previous discussion. The 
main result is that (4.1) then always permits a solution which becomes infinite a t  a 
finite value ofr?. The singularity has the same structure as that discussed above with 
the only change being that, dependent on the other constants, i t  is possible for B 
alone to become infinite. The equilibrium solutions of the amplitude equations and 
thus instability characteristics can similarly be investigated for the case a,, < 0. Here 
the three-dimensional mode bifurcates to the right and is always unstable. In some 
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situations the mixed mode exists and it is possible for the two-dimensional mode to 
be stable to small perturbations. However, sufficiently large perturbations always 
destabilize the flow so that we conclude that when a2, < 0 the presence of sufficiently 
large-amplitude perturbations will always lead to the finite-X singularity being set 
up. We conclude that there are just two situations where the ultimate state set up 
after a wave interaction between two- and three-dimensional modes will not be a 
stable two-dimensional mode. These exceptional circumstances correspond to when 
a,,, a,, > 0, b,,, b,, < 0 with alra,, < b,, b,, or whenever aZr < 0. 

A similar type of discussion for (4.2) is not possible because there are no 
equilibrium states for this system for all 2. However, for large values of r? it is easy 
to show that there is a solution with p = A,,@a;,!, (T = 0 and that this solution is 
stable. There are no other equilibrium states so that, unless limit-cycle solutions of 
(4.2) exist, or a singularity develops we expect any initial disturbance to evolve into 
a pure two-dimensional mode a t  large 3. Numerical investigation of (4.2) showed no 
evidence of limit-cycle behaviour and that in the exceptional case a finite-3 
singularity develops and the two-dimensional equilibrium state is then never set up. 
It remains for us to  discuss the values of a,,, a,,, b,,, b,, found in our calculations so 
that the above results can be applied to the instability of attachment-line flow. 

5. Results and discussion 
We have seen in the previous section that the nature of the solutions of the 

amplitude equations depends crucially on the constants a,,, b,,, a,,, b2,. These 
constants can be found only after the differential systems for the fundamentals, 
adjoint, first harmonic, mean flow correction functions have been solved numerically. 
These systems were solved using finite differences in the manner described in 
Hall & Smith (1984); the reader is referred to that paper for a more detailed 
description of the method. It was found to be convenient to map the region 0 < c < 
00 into [0,1] using the transformation 

r) 
Y 

7 = - tan-, 5, 
7t 

which aids the convergence of the velocity field a t  large 5. The other significant 
difference between our calculations and those of Hall & Smith is that here the 
spanwise momentum equation has a solution with the velocity component tending to 
a constant rather than decaying algebraically to zero. In  order to illustrate how this 
can be taken into account we consider the equations for U,,, T/;,, W,,,P,,. By 
combining the X * and 2 momentum equations we can show that F = azo U,, + pz0 W,, 
and G = pU,, -AXn W,, satisfy 

F"' - [ - iSZ,, + i(U, azo +pLpz0) 0 F' = 0, (5.1 a )  

(5 .1b )  

The first of these equations is to be solved such that F(0)  = F ( 0 )  and F + constant 
when c+ co whilst the second equation is solved subject to G(0) = 0, G(w) - 5-l. 
Thus the combination pU,,-AX, W,, decay algebraically when c+ CO. Once the 
equations are solved for F and G we can determine U,, and W,, and then the equation 
of continuity is solved to determine K,. The equation for the first harmonic functions 
can be integrated using the same procedure. Finally in our discussion of the 
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a 2 0  

-0.1614 
-0.3162 
-0.3747 
-0.3725 
-0.3443 

0.0490 
0.301 1 
0.5251 
0.9849 
3.4675 
5.0859 

10.6798 

P 2 0  

0.0427 
0.1142 
0.1933 
0.2523 
0.31 10 
0.5000 
0.4668 
0.3795 
0.2020 

-0.1164 
-0.2706 
-0.7970 

8 2 0  

0.0615 
0.2019 
0.3674 
0.4879 
0.6040 
1.0095 
1.0375 
0.9864 
0.8797 
1.1672 
1.3970 
2.0859 

- a 1 r  

- 15.5854 
- 15.5801 
- 15.5801 
- 15.5801 
- 15.5801 
- 15.5801 
- 15.5801 
- 15.5801 
- 15.5801 
- 15.5801 
- 15.5801 
- 15.5801 

bl, 
-32081 339.0 
- 159 114.0 

41.1670 
13 14.9614 
666.9944 

10.663 1 
334.7004 
368.3667 
675.7219 
231.6547 
36.0614 

- 74.2458 

a 2 r  

- 12 895.0 
-757.2574 
- 177.9206 
- 89.1333 
- 52.8080 
- 14.8748 
- 13.9080 
- 15.7352 
- 19.8390 

1.1880 
2.0798 
0.7039 

TABLE 1. Typical neutral values for X ,  = 0.1 

bz ,  

- 80.4869 
100.4 104 
300.6889 
202.8252 
- 45.7879 

2.3777 
-73.8144 
113.9694 
692.2803 

- 2 153.2899 
- 2059.4528 
- 1666.8360 

-0.4 -0.2 0 0.2 0.4 0.6 0.8 

Pm 
FIGURE 4. The different bifurcation solutions for X ,  = 0.1, 1. 

numerical scheme we note that the convergence of our scheme was checked when 
appropriate by varying the step length over l&,, the approximation to co in the 
<-direction. 

The constants a,, b,, a2 and b, were calculated for X, = 0.1, 1 ,5  and 10. The results 
are normalized by making al0 U;, +pl0 W;, and az0 u;l, +pz0 W;, both equal to unity 
at < =  0. Some typical values of these constants are shown in table 1 €or the 
exceptional case. We see that it is possible for either of the two exceptional cases of 
the previous solution to occur. I n  figures 4 and 5 we have plotted the neutral values 
of a*,,, pzo and indicated where the exceptional cases occur. The first exceptional case 
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-0.02 I I I 1 I I I 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

Pm 

FIGURE 5 .  The different bifurcation solutions for X ,  = 5 ,  10. 

with a,,,a,, > 0 is denoted by the dotted line whilst the other exceptional case is 
denoted by the dashed line. 

We see that a t  X ,  = 0.1 an interaction of the two-dimensional mode with the 
three-dimensional mode with a/P > - 1.27 will cause a singularity in the disturbance 
amplitudes to occur. Thus a t  X, = 0.1 three-dimensional waves propagating a t  an 
angle of more than about 50" to the attachment line will cause the catastrophic 
breakdown of the two-dimensional mode. 

A further band of modes with azo < 0 which leads to the first exceptional case is 
also seen to exist. These correspond to low-frequency three-dimensional modes. In  
the limit as az0 + 0 these modes have zero effective shear stress and correspond to the 
stationary viscous crossflow modes of Hall (1986) and MacKerrell (1987). We 
conclude that near the attachment line the stimulation of oblique waves propagating 
at an angle greater than about 50" or the stimulation of the viscous crossflow modes 
of Hall and MacKerrell will cause a new larger amplitude disturbance flow structure 
to  develop. 

When X, = 1 only the destabilizing band of wavenumbers corresponding to the 
low-frequency modes remains and the interval over which they exist has decreased. 
However, when X ,  = 5 the stationary viscous crossflow modes becomes subcritically 
unstable so that the stationary viscous crossflow modes cause the finite-r? singularity 
to develop a t  almost all of the possible negative values of az0. In  addition there is a 
very short band of oblique modes propagating a t  an angle of about 80" to  the 
attachment line which leads to the singularity being set up. This band of unstable 
wavelengths no longer occurs a t  X, = 10 but the stationary viscous crossflow modes 
are now subcritically unstable for almost all of the possible values of azo with 

Without prohibitively expensive numerical calculations we cannot confirm that 
the results discussed above show the overall trend of the possible interactions when 

uzo < 0. 



390 P.  Hall and S .  0. Seddougui 

X, increases. I n  fact some further investigation showed tha t  the small band of 
destabilizing oblique modes a t  X, appears and disappears as X ,  varies. However, our 
calculations do suggest tha t  at small values of X, there is a wide range of possible 
oblique modes and a small band of low-frequency modes which, if excited. will cause 
a catastrophic breakdown of the disturbance flow field. Further away from the 
attachment line the oblique modes become less important and i t  is the lower 
frequency modes which become the dominant mechanism. 

Clearly our analysis cannot predict what kind of flow will be set up once the 
singularity appears. However we note tha t  other modes, notably the inviscid 
stationary crossflow vortex mode of Gregory P t  al. (1955) might then become 
important. 
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